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Crack growth in a new nickel-based superalloy

at elevated temperature

Part II Finite element analysis of crack growth

L.-G. ZHAO, J. TONG∗
Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea
Road, Anglesea Building, Portsmouth PO1 3DJ, UK

Crack growth at elevated temperature has been simulated using the finite element method
for sustained and cyclic loading conditions, representative of time-dependent and
time-independent crack growth. Elastic-creep (EC) and elastic-plastic-creep (EPC) models
have been used to simulate the crack growth under sustained loads at 650 and 725◦C. Crack
mouth opening displacements as well as the evolution of the inelastic zones due to creep
and plasticity have been obtained. Elastic-plastic finite element analysis has been carried
out to simulate the crack growth under cyclic load using a constitutive model. Fatigue crack
growth was simulated for plane stress, plane strain and generalized plane strain loading
conditions. The influence of plasticity on the effective crack driving force was also
examined.

Creep damage was found to be very limited at both temperatures for this alloy.
Plasticity-induced crack closure was found to be absent in plane strain or generalized plane
strain conditions, overestimated in plane stress loading conditions by the conventional
compliance method. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Crack growth at elevated temperature has been reported
in a new fine-grained nickel-based superalloy under a
variety of loading conditions at 650 and 725◦C [1]. A
mixture of time and cycle dependent crack growth has
been observed for base frequencies over 0.01 Hz while
time dependent crack growth was found in long dwell
and sustained load cases. To understand the fundamen-
tal mechanisms of crack growth at elevated tempera-
ture, material constitutive models have been utilized
in the simulation of the crack growth behaviour under
typical loading conditions.

Time-dependent crack growth is usually simulated
using elastic-secondary creep models [2–4], where the
crack growth may be either creep ductile or creep brit-
tle, depending on the extent of creep deformation that
accompanies the crack growth. Significant creep de-
formation occurs in creep-ductile materials where the
crack may be considered nearly stationary within the
field of an expanding creep zone. The asymptotic stress
field is of Hutchinson-Rice-Rosagren (HRR) type [2],
and in the limiting case, relates uniquely to a crack tip
line integral [3]. An instantaneous stress-power dissi-
pation rate [5] is used to characterize the crack growth
rate. For creep-brittle materials, however, creep defor-
mation tends to be limited and the crack growth rate is
comparable to the expansion rate of the creep zone at
the crack tip. In such cases, the stress intensity factor K
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is considered more appropriate, particularly at steady-
state crack growth stage. For a cracked-body undergo-
ing creep deformation, the load-line deflection rate is
often used as a measure of material characteristics. For
V̇C/V̇ ≥ 0.8, where V̇C is the load-line deflection rate
due to creep and V̇ is the total deflection rate, the ma-
terial is regarded as creep ductile [6] while V̇C/V̇ � 1
indicates creep brittle. For the alloy used in the present
study, creep curves have been obtained from conven-
tional creep tests at 650 and 725◦C [7]. These curves
will be used to obtain the parameters in elastic-creep
(EC) and elastic-plastic-creep (EPC) models to sim-
ulate the time-dependent crack growth. The load-line
deflection rate and the creep zone expansion rate will
be examined to determine the material creep charac-
teristics. This information will form the base for the
selection of an appropriate parameter in the character-
ization of time-dependent crack growth in Part III.

For time-independent fatigue crack growth, crack
closure has been reported as the complication giving
rise to amorphous crack growth behaviour. The concept
of effective stress intensity factor range has been used
to improve the correlation between the fatigue crack
growth rate and the stress intensity factor range. It is
known, however, that material characteristics may have
a profound influence on the simulated crack growth pat-
tern, hence the crack closure characteristics [8–10], al-
though early work on crack closure has largely based on
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simplified material models. In this work, a full consti-
tutive model will be used to simulate advancing fatigue
cracks under plane stress, plane strain and generalised
plane strain conditions. The role of plasticity-induced
crack closure will be critically examined. This infor-
mation will again be used in the characterization of
time-independent fatigue crack growth in Part III.

2. Modelling of crack growth under
sustained load

2.1. Numerical procedures
2.1.1. The theory
For small strain deformation, the time-dependent de-
formation may be described by the elastic-secondary
creep constitutive relation

ε̇ = σ̇ /E + Aσ n, (2.1)

where ε̇ is the uniaxial strain rate, σ̇ the uniaxial stress
rate, E the Young’s modulus, and A and n the steady-
state creep coefficient and exponent, respectively.

A generalization of Equation 2.1 for multiaxial stress
state is given by:

ε̇′
ij = 1 + ν
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ij + 3
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ij are deviatoric components of strain
rate and stress and ν is Poisson’s ratio. The effective
stress defined by
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(

3
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ijσ
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. (2.3)

The constitutive relations (2.1)–(2.3) are available in
the finite element code ABAQUS [11]. The uniaxial
relation between the steady-state creep rate ε̇cr and the
stress σ is shown in Fig. 1. The material constants A
and n were obtained from the creep test data at 650,
700 and 750◦C, using a least-square method. Material
constants at 725◦C were obtained from an interpolation
based on the results obtained at 650, 700 and 750◦C, as
shown in Table I.

Time-independent plasticity is described using von
Mises yield surface with an isotropic hardening rule.
Uniaxial tensile test data were used to obtain the re-

Figure 1 Uniaxial relation between the steady-state creep rate ε̇cr and
the applied stress σ for Alloy X at 650, 700 and 750◦C, respectively.

TABLE I Material constants of Alloy X at 650, 700 and 750◦C

Temperature (◦C) E( GPa ) ν A (MPa−n/h) n

650 190 0.285 3.71 × 10−76 24.15
700 181 0.290 1.73 × 10−58 18.79
750 176 0.296 1.18 × 10−34 11.22

Figure 2 The stress versus strain curve under monotonic tensile loading.

lationship between the plastic strain and the stress at
650◦C, as shown in Fig. 2. This relationship was then
used in ABAQUS to model the time-independent plas-
ticity. Since there are no test data available for tem-
perature over 650◦C, plasticity was considered only at
650◦C.

2.1.2. Finite element models
Crack growth in a standard side-grooved compact
tension (CT) specimen (width = 26 mm and effective
thickness = 11.56 mm) was modelled using ABAQUS
[11]. The mesh used for the analysis consists of 3098
four-noded plane-strain isoparametric elements, as
shown in Fig. 3, where an extremely dense mesh
(�/a = 3.9 × 10−3) was generated around the crack
growth area. Eight-noded quadratic elements with
reduced integration would normally be the first choice
for the analysis of stationary plastic/creep fracture
mechanics, since the crack tip singularities can be
properly simulated and a less refined mesh is required.
However, for crack propagation analysis, four-noded
first-order elements are recommended [11]. Only the
upper half of the specimen was considered due to
the symmetry. A load of P = 7 kN was applied to a
rigid pin constructed to fit the hole, as shown in the
mesh. The rigid pin and the specimen were modelled
as contact surfaces. Crack growth was simulated by
releasing a sequence of 64 nodes along the lower
boundary of the dense portion of the mesh. A rigid
surface was introduced along the symmetry axis. The
64 nodes were bonded to the rigid surface and they
were allowed to slide along the rigid surface before the
start of crack growth. A criterion of crack length versus
time obtained experimentally (Fig. 4) was used to
control the crack growth procedure, i.e., the debonding
of the 64 nodes from the rigid surface.

As the crack grows from one nodal position to the
next, the force carried by the node is gradually released
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Figure 3 The finite element mesh used for the creep analysis: (a) the model and (b) the refined mesh around the crack growth area (�/a = 3.9 ×
10−3).

Figure 4 Comparison of the measured crack mouth opening displace-
ment with that obtained from the finite element analysis at 650◦C.

over a number of time increments. To keep the crack
open during the crack growth, the rate of force release
was chosen to be faster than the rate of force relaxation
caused by plasticity/creep deformation. Specifically in
our work, the relative amplitude of the force carried
by the node is 1.0 at time t = t0, 0.96 at t − t0 =
10−14 h, and then reduces to 0 as a linear function of
log (t − t0). Here, t0 is the time at which the node
starts to debond from the rigid surface. The variation
of the time increment during the plastic/creep analysis
was automatically selected by ABAQUS after giving
the value of the reference parameter CETOL [11] that
controls the accuracy of the analysis. For our case, the
value of CETOL was chosen to be 1.0×10−4 and this al-
lows about 1% relative error in the estimated stress near
the crack tip. The minimum time increment, adopted
in ABAQUS just after the debonding of a node, was as
small as 10−14 h to ensure convergence. This numerical
procedure has been successfully applied in our previous
work [12] to simulate constant creep crack growth in
a conventional nickel-based superalloy, Waspaloy. The
finite element model and the numerical procedure were
adopted for both elastic-creep (EC) and elastic-plastic-
creep (EPC) simulations.

2.2. Results and discussion
The crack mouth opening displacement was recorded
on the crack face using an extensometer during the ex-
periment. Both EC and EPC models were used to ob-
tain the same quantity at the exact position as in the

experiment. Fig. 4 shows the comparison of the re-
sults from the experiment and the simulation at 650◦C.
The general agreement seems to be reasonable, with
the maximum error of about 15% occurred during the
initial period. The results from the EC and EPC mod-
els are almost identical, indicating the insensitivity of
the far field displacement response to the addition of
classical plasticity. Fig. 5 shows the components of the
load-line displacement (a) and the load-line displace-
ment rate (b). The elastic displacement was obtained
as a function of crack length from an elastic analysis
[13]; while the displacement due to creep was obtained

(a)

(b)

Figure 5 (a) The load-line displacement obtained from the elastic-
plastic-creep model. (b) The ratio of creep/plastic deflection rate (V̇C) to
total deflection rate (V̇ ) against the crack length.
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Figure 6 The plastic zone (a) and the creep zone (b) left in the wake of the crack growth from the elastic-plastic-creep (EPC) model.

by removing the elastic component from the total de-
flection. The associated displacement rates were ob-
tained subsequently using a secant method [6]. Again,
both EPC and EC models reveal the same pattern of
load-line displacements with the displacement almost
entirely attributes to elastic deformation. The ratio of
displacement rates V̇C/V̇ seem to oscillate around zero
and in all cases, V̇C/V̇ � 1 applies. This indicates
that the material is essentially creep-brittle and the
creep deformation developed during the crack growth is
negligible.

The evolution of plastic and creep zone was evalu-
ated by defining the locus of the data points where the
effective inelastic or creep strain (ε̄in/ε̄cr) is equal to
the effective elastic strain ε̄e. Fig. 6 shows the contour
plots of the inelastic strain (a) and creep strain (b). The
filled dark areas represent the inelastic (a) and creep
(b) zones. Clearly, both deformation seems to be con-
fined to a thin layer adjacent to the crack growth path.
Fig. 7 shows the combined creep-plastic zone left in the
wake of the crack path as well as the creep and plas-
tic components in the vertical (90◦) direction. While
the plastic zone seems to increase with the increase of
crack length, the development of the creep zone seems
to be only weakly correlated with the crack length. It is
interesting to note, however, that the creep zones from
the EC model are almost identical to those of plastic-
creep zones obtained from the EPC model (Fig. 8).
This is due to the unique characteristic of the HR field
where the near tip stress amplitude is soly determined
by the crack growth rate and independent of the load

Figure 7 The radii of the creep and plastic zone in the crack wake along
the θ = 90◦ direction, EPC model.

Figure 8 The radii of the creep/plastic zone along the θ = 0◦ and θ =
90◦ direction, comparison of EPC and EC models.

and crack growth history. Consequently, by ignoring
the time-independent plasticity, the elastic-creep model
may overestimate the creep deformation.

Fig. 9 shows the profiles of the effective stress near
the crack tip in the vertical direction from the EPC
model. Stress relaxation at the early stage was insignif-
icant and HR field gained dominance almost instantly.
The amplitude of the effective stress near the crack
tip is slightly higher (10%) in EPC case than that
in EC case (omitted for clarity), possibly due to the
isotropic hardening introduced in the EPC model. The
creep/plastic zones are nevertheless identical in both
cases.

Figure 9 Effective stresses σ̄ near the crack tip along the θ = 90◦
direction for the elastic-plastic-creep model.
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Figure 10 The radii of the creep zone in the wake of crack growth along
the θ = 90◦ direction at 725◦C.

At 725◦C, the results from the finite element analysis
are very similar to those obtained at 650◦C. Fig. 10
shows the creep zone left in the wake of crack growth.
The distribution of the effective stress near the crack
tip is very similar to that at 650◦C, omitted here for
space consideration. The creep deformation measured
using displacement/displacement rate was again very
limited (omitted) and the overall crack growth pattern
unchanged, albeit a slight increase in the size of the
creep zone (Figs 8 and 10).

3. Modelling of crack growth
under cyclic load

3.1. The constitutive model
An elastic-plastic constitutive model has been used
in this work to describe the time-independent crack
growth under cyclic loads. Both isotropic and kine-
matic hardening have been considered in the cyclic
stress strain behaviour. For small strain deformation,
the strain tensor ε may be partitioned into an elastic
part εe and a plastic part εp:

ε = εe + εp (3.1)

According to the von Mises yield criterion, the yield
function f is defined as

f (σ, χ, R, k) = J (σ − χ ) − R − k ≤ 0 (3.2)

where χ is the kinematic hardening variable, R is the
isotropic hardening variable and k is the initial value of
the radius of the yield surface. J denotes the von Mises
distance in the deviatoric stress space

J (σ − χ ) =
√

3

2
(σ ′ − χ ′) : (σ ′ − χ ′) (3.3)

where σ ′ and χ ′ are the deviators of σ and χ ; while:
represents the inner product of two tensors.

The evolution of the kinematic stress tensor χ and
the isotropic stress R may be described through the
following rules [14]

χ̇ = 2

3
C ε̇p − γχ ṗ and Ṙ = b(Q − R) ṗ (3.4)

TABLE I I Optimized parameters for the constitutive equation

E (GPa) k (MPa) Q (MPa) b C (GPa) γ

205 600 150 6.8 540 1200

where C , γ , b and Q are four material and temperature
dependent constants which determine the shape and
amplitude of the stress-strain loops during the transient
and saturated stage of cyclic response.

The above constitutive equations are available in
ABAQUS. The six material parameters, E , k, b, Q,
C and γ , are optimized from the uniaxial test data of
Alloy X at the temperature of 300◦C [15], as shown in
Table II. The choice of this temperature is to ensure pure
time-independent deformation during crack growth as
opposed to the cases studied in Section 2.

3.2. Finite element model
Fatigue crack growth in a CT specimen was simulated
using the full constitutive model as detailed in 3.1. A
total crack growth of 1.6 mm was simulated with an
initial length of 12.2 mm and a final crack length of
13.8 mm. The element size in the crack growth area
is 12.7 µm, sufficient for the purpose of crack growth
modeling where the forward plastic zone would con-
tain about 27 elements. Four-noded first-order elements
with full integration were used as they are preferred for
crack propagation analysis [11]. The maximum applied
cyclic load was 7 kN with a load ratio R chosen to be
zero. The limit load, P0, at the initial crack length is
27.5 kN for plane strain (Pmax/P0 = 0.25) and 20.2 kN
for plane stress (Pmax/P0 = 0.35). Again, the load was
applied to a rigid pin fitted into the hole of the spec-
imen. The rigid pin and the specimen were treated as
contact surfaces. The crack growth was simulated by
releasing a sequence of nodes along the path of crack
growth. The nodes to be released were initially bonded
to a rigid surface introduced along the symmetry axis.
The bonded nodes were allowed to slide along the rigid
surface before the start of crack growth. A criterion
of crack length versus time [15] was used to control
the crack growth procedure, i.e., the debonding of the
nodes from the rigid surface and the node was released
just after reaching the maximum load. The first cycle
was used to allow the stabilization of the stress-strain
curve around the crack tip. The crack closure was ex-
amined at the minimum load of the second cycle. As
the crack grew from one nodal position to the next, the
force carried by the node was gradually released to zero
over a half cycle. Specifically in our work, the relative
amplitude of the force carried by the node was 1.0 at
the start of node debonding and reduced to 0 as a lin-
ear function of the time in a half cycle. The adopted
time increment was the same as that used in the anal-
ysis for a stationary fatigue crack, i.e, 160 increments
for each cycle. Contact elements were built up between
the crack surface and a rigid surface constructed along
the symmetry axis to prevent the overlap of crack sur-
faces during unloading. A total of 256 cycles were re-
quired, representing an average crack growth rate of
6.25 × 10−6 m/cycle. In addition to plane stress and
plane strain conditions, a generalized plane strain [11]
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Figure 11 Crack opening profiles at the minimum load (af = 13.8 mm)
for plane strain, generalised plane strain and plane stress conditions.

condition was also considered to allow the deformation
in the thickness direction and hence more representative
of real specimens.

3.3. Results and discussion
The crack opening profiles following a crack growth
of 1.6 mm are shown in Fig. 11 for plane stress, plane
strain and generalized plane strain conditions. For plane
strain and generalized plane strain conditions, the crack
stays open except the first element next to the crack tip,
suggesting no physical closure at the minimum load.
This is consistent with the work by Fleck and Newman
[17] who reported crack closure over one element in
a plane-strain bend specimen. Fleck and Newman [17]
reported that the crack closure was associated with the
transient crack growth (�a < 0.5 mm) and decayed
steadily towards steady-state crack growth. This may
help to explain the difference in the crack closure be-
haviour when the length of crack growth differs, as
reported in [17]. The closure behaviour observed under
generalized plane strain condition seems to be similar
to that under plane strain, and physical closure is absent
in both cases.

Substantial crack closure (1.26 mm contact length
for 1.6 mm crack growth) was observed under plane
stress condition, consistent with numerous experimen-
tal and finite element studies. Compliance measure-
ments using displacement or strain gauges have pre-
viously been used to assess crack closure. Fleck [19]
reported U = 0.72 for a CT specimen in the plane stress
condition measured using four different experimental
methods. This level of crack opening compares well
with the current study, where U = 0.72 is obtained from
0.2% of the load-displacement offset trace (Fig. 12). In
finite element analysis, crack closure is often evaluated
by directly monitoring the displacements of the nodes
on the crack surface during unloading. Crack closure is
assumed when a zero normal displacement is recorded
at the first or preferably the second node behind the
crack tip. The second node was monitored in this work.
The obtained opening level U is about 0.57. Clearly,
the level of crack opening differs considerably from
different methods of evaluation.

The significance of crack closure in modifying the
effective stress intensity factor range has been exam-

Figure 12 The load-complaince offset plot at af = 13.8 mm for plane
strain, generalised plane strain and plane stress conditions.

ined. For the plane stress condition, the stress inten-
sity factor K at the final crack length (af = 13.8 mm)
was determined using a displacement method [12]
under small scale yielding conditions. The range of
K -dominant field was identified and selected nodes
away from the crack tip and the crack growth area were
used to plot the apparent stress intensity as a function of
r for θ = 180◦, based on the displacement output from
the FE model. The K value at the crack tip (r = 0)
was then extrapolated from the apparent stress inten-
sity versus r curve. The calculation was repeated for
a whole loading cycle. The obtained solution is com-
pared with the standard CT solution in Fig. 13, where
the crack opening range observed during the FE sim-
ulation is also indicated. Clearly the stress intensity
factor range during the crack opening period does not
coincide with the actual stress intensity factor range
obtained by the displacement method (marked as FE
solution). The FE solution gives a stress intensity factor
range of 32.1 MPa

√
m, compared with the “effective”

stress intensity range of 25.6 MPa
√

m from the compli-
ance analysis and 20.3 MPa

√
m indicated by the phys-

ical “opening” of the crack. These results seem to cast
some doubts on the validity of the current practice in
crack closure measurement. The compliance approach

Figure 13 Variation of the stress intensity factor during a loading cycle
at af = 13.8 mm for plane stress conmdition; comparison of the finite
element and standard elastic solutions.
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seems to have exaggerated the role of crack closure
with a 28% reduction in nominal stress intensity range
compared with a 10% reduction from the FE analysis.

4. Concluding remarks
The finite element method has been used to model
the time-dependent crack growth under sustained loads
and the time-independent fatigue crack growth. Elastic-
creep and elastic-plastic-creep models have been used
to simulate the crack growth under sustained loads
while a constitutive model with both kinematic and
isotropic hardening deformation has been used in the
simulation of fatigue crack.

Creep damage was found to be very limited at both
temperatures considered. This would suggest a “creep-
brittle” characteristic in Alloy X that seems to warrant
an elastic parameter, such as stress intensity factor K , as
a characterization parameter. For fatigue crack growth,
the norminal stress intensity factor K would seem to
suffice for plane strain or generalised plane strain load-
ing conditions. Even for plane stress conditions, the role
of crack closure seems to be only marginal.
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